
XO: XMPP Overlay Service for Distributed Chat
Robert N. Lass∗, Joe Macker† David Millar∗, William C. Regli∗ and Ian Taylor‡

∗Department of Computer Science
College of Engineering

Drexel University, Philadelphia, PA
Email: {urlass, dwm27, regli}@cs.drexel.edu

†Information Technology Division
Naval Research Lab, Washington, D.C.

Email: joseph.macker@nrl.navy.mil

‡School of Computer Science
Cardiff University, Cardiff, UK

Email: Ian.J.Taylor@cs.cardiff.ac.uk

Abstract—This work discusses the adaptation of group-
oriented messaging and chat technology for operation in server-
less, multicast-capable mobile wireless architectures. The main
goals are to allow group messaging and chat sessions to frag-
ment/coalesce, operate through disrupted TCP conditions, and
improve bandwidth utilization when multicast is available. In
addition, the solution demonstrates proxying and gateway meth-
ods to interoperate with existing client and server standards and
software. The approach presents several innovations that extend
and adapt eXtensible Messaging and Presence Protocol (XMPP)
standards for incorporating group serverless chat and messaging
within more challenging operational environments. While there
is large body of work on messaging middleware solutions, this
paper concentrates on the adaptation of specific XMPP standards
for serverless, multicast operation. We discuss our working
implementation prototype and present initial experimentation
comparing client/server multi-user chat (MUC) operation to
serverless multicast MUC within several mobile network sce-
narios. In addition, we demonstrate a gatewaying solution for
serverless MUC systems to interoperate with conventional MUC
server-based systems. The specific test scenarios are instrumented
to operate within a wireless mobile emulation environment using
mobile ad hoc network (MANET) unicast and multicast routing
technology. This approach remains independent of any particular
routing algorithm and the proxied XMPP protocol module allows
for the deployment of existing real-world client software across
all nodes of the network. The initial findings show the significant
performance potential for serverless MUC extensions. In addition
to these results, we discuss some ongoing design challenges and
future planned work.

I. INTRODUCTION

Presently a wide variety of chat and messaging systems
exist and are deployed for multi-user chat (MUC) capabilities
(e.g., Internet Relay Chat (IRC), eXtensible Messaging and
Presence Protocol (XMPP) jabber, gchat). These widely used
systems generally have salient features making performance
problematic in wireless mesh or mobile ad hoc network
(MANET) scenarios. First, the standard architectures are often
purely client/server based designs and if the MUC manage-
ment servers disappear, degrade, or fragment, the client group

suffers with potentially no communication support even if
peer collaborative nodes are reliably reachable within the
network. Second, present approaches tend to build and rely
upon establishing multiple TCP unicast transport session for
maintaining centralized MUC chat, raising mobile and wireless
performance issues [1], [2]. In addition, supporting a set
of centralized unicast connections for group communications
is resource inefficient in cases where the flows traverse
shared wireless medium. An example of a unicast-oriented,
centralized MUC standard is the XMPP MUC protocol [3]
(client/server protocol), described in more detail in Section II.
To begin addressing the above concerns while maintaining
messaging standard interoperability, we have developed prox-
ying and gateway components that leverage existing XMPP-
based MUC messaging standards to provide a basic multicast
and distributed peer-to-peer operational mode. This approach
is essentially an XMPP Overlay (XO) messaging service
that adapts XMPP MUC to a mobile multicast environment
and provides alternative network transport capabilities. Since
XO provides serverless operation and there is no centralized
repository, we also developed additional multi-hop discovery
and presence mechanisms to improve mobility robustness and
to aid in simplifying network operations.

In addition to demonstrating novel multicast, serverless
capabilities enabled by XO, we are interested in supporting
existing widely available client and server software for XMPP
MUC simultaneously. Nodes using the serverless paradigm
and those using the conventional centralized MUC can also
interoperate in bridged group chat/messaging sessions. Local
XMPP clients interact with a proxy and these localized ses-
sions can interoperate with conventional XMPP servers when
gatewaying is available. If gatewaying is not available, or
becomes disrupted, XO can operate as a completely serverless
MUC in an independent, autonomous fashion. To summarize,
the solution space addresses the following components:

• multicast serverless chat capability;

The 2010 Military Communications Conference - Unclassified Program - Networking Protocols and Performance Track

978-1-4244-8179-8/10/$26.00 ©2010 IEEE 1227

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
XO: XMPP Overlay Service for Distributed Chat

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Information Technology
Division,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at MILCOM 2010 Military Communications Conference, Oct 31, Nov 3, 2010, San Jose, CA

14. ABSTRACT
This work discusses the adaptation of grouporiented messaging and chat technology for operation in
serverless multicast-capable mobile wireless architectures. The main goals are to allow group messaging
and chat sessions to fragment/ coalesce, operate through disrupted TCP conditions, and improve
bandwidth utilization when multicast is available. In addition, the solution demonstrates proxying and
gateway methods to interoperate with existing client and server standards and software. The approach
presents several innovations that extend and adapt eXtensible Messaging and Presence Protocol (XMPP)
standards for incorporating group serverless chat and messaging within more challenging operational
environments. While there is large body of work on messaging middleware solutions, this paper
concentrates on the adaptation of specific XMPP standards for serverless, multicast operation. We discuss
our working implementation prototype and present initial experimentation comparing client/server
multi-user chat (MUC) operation to serverless multicast MUC within several mobile network scenarios. In
addition, we demonstrate a gatewaying solution for serverless MUC systems to interoperate with
conventional MUC server-based systems. The specific test scenarios are instrumented to operate within a
wireless mobile emulation environment using mobile ad hoc network (MANET) unicast and multicast
routing technology. This approach remains independent of any particular routing algorithm and the
proxied XMPP protocol module allows for the deployment of existing real-world client software across all
nodes of the network. The initial findings show the significant performance potential for serverless MUC
extensions. In addition to these results, we discuss some ongoing design challenges and future planned
work.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Topological
Churn, DIL Fixed Nets

High BW

Fig. 1. Problem Space

• multi-hop serverless discovery support;
• standardized XMPP MUC client proxying; and
• standardized XMPP MUC server gatewaying.
The main contributions of this paper are the architecture of

XO and the initial empirical analysis of the multicast-based
XMPP Overlay (XO) service. The XO design provides both a
proxy and a server gateway component as represented in Fig-
ure 1. An unmodified XMPP client connects locally to the XO
proxy (XOP) agent, which mediates the XMPP protocol to XO
multicast message forwarding and related discovery processes.
Finally, the XO Gateway (XOG) bridges XOP MUC multicast
operation with conventional XMPP MUC sessions using off-
the-shelf client/server solutions (e.g., Openfire1 server).

The paper is organized as follows. Section II provides
an overview of related XMPP Extension Protocols (XEPs)
and multicast work. Section III discusses the architecture,
design and system components for the XO system. Section IV
discusses various empirical studies conducted using XO com-
ponents. Section V presents conclusions and lessons learned
and Section VI outlines future work and ongoing challenges.

II. RELATED XMPP STANDARDS AND RELATED
MULTICAST WORK

This section discussed related XMPP standards and the
relationship to XO work and also briefly summarizes related
multicast work that XO takes advantage of. Due to space
limitations and the depth of the field, this is not a compre-
hensive survey of related work but rather it concentrates on
the specifics of adapting XMPP and analyzing XO.

A. XMPP Extensions

XEP-0174 [4] is a Draft Standard of the XMPP Standards
Foundation that specifies a link-local messaging protocol
defining how XMPP messaging can be accomplished using
zero-configuration networking. This method uses mDNS for
service discovery of network entities that support the protocol,
including their IP addresses and preferred ports. Any two
entities can then negotiate a serverless connection and using
XML streams, exchange XMPP messages and IQ stanzas.
XEP-0174 is similar to XO in that it supports serverless
discovery and chat, but it only supports link-local discovery,
and point-to-point messaging over TCP streams.

1http://www.igniterealtime.org/projects/openfire/index.jsp

XEP-0100 [5] specifies XMPP gateway interaction. The
specification defines this to mean gateways that proxy XMPP
clients onto non-XMPP servers, such as IRC. This is similar
to what is occurring with the XOP, in that it receives XMPP
packets and translates them into another protocol. However,
there are two main differences. First, the XEP requires a client
that implements the XEP registering with a gateway, most
likely on an XMPP server such as OpenFire, that has also
implemented the XEP. XOP does not require a client or server
with these features. Second, the XEP does not support MUC,
only point-to-point messaging.

XEP-0045 [3] describes the XMPP Multi-user chat (MUC)
protocol. This protocol allows clients to create, discover,
join and leave group-oriented MUC rooms. The rooms are
associated with a server, and all messages addressed to the
room are sent to the server. The server then resends the
messages out to all of the members of the room through their
existing connection to the server. The main difference between
this and XO is the requirement of the server, and the multiple
server-client unicast connections required versus the multicast
approach to transporting messages among peers.

Among the XMPP extensions XEP-0100, XEP-0174, and
XEP-0045, none address how the TCP-oriented connection
paradigm might apply to a multicast setting and therefore
do not offer serverless group-based messaging. XEP-0174
specifies serverless discovery over a link-local connection, but
then delegates all subsequent interactions to a unicast TCP
connection. With the other two extensions, all communications
pass through an XMPP server which multiplexes messages
over TCP connections with each of the various chat room
members. XO is capable of not only initiating an XMPP
session, but it can also utilize underlying out-of-band protocols
for the communication of actual XMPP stanzas, such as chat
messages and so forth.

B. Related Multicast Work

The work on XO in this paper is partially built on the idea
that some form of multi-hop multicast forwarding capability is
available within wireless edge networks. If this is not the case,
a deployment may take advantage of XO serverless, non-TCP
transport adaptations to XMPP but our main contribution is
in the multicast space. Future work is looking at alternative
pluggable transport capabilities for more survivable, consistent
operations even in unicast scenarios.

To support the experimental scenarios in this paper, XO
takes advantage of the Simplified Multicast Forwarding mech-
anism [6] to provide an IP multicast forwarding interface
within mobile mesh or MANET wireless environments. SMF
is capable of supporting multiple forwarding algorithms such
as classical flooding, essential connecting dominating set (E-
CDS) and source-based multipoint relay (S-MPR). Other IP
or MANET specific multicast protocols could be used with
no change to the XO approach.

III. SYSTEM COMPONENTS AND DESIGN

XO is implemented as a plugin to the Generic Unicast-
to-Multicast (GUMP) proxy. GUMP is a framework allowing

1228

developers to create transport protocol independent server-side
proxies that support the conversion of messaging protocols,
such as XMPP, into a back-end serverless group messaging en-
vironments. GUMP allows the developer to focus on the detail
of the server proxy without being tied down to the specifics of
how entities are discovered nor how messages are to be sent
between those entities e.g. multicast. The GUMP architecture
is divided into four main areas: application connectivity; server
proxy interface and implementation; session messaging; and
data messaging.

Application connectivity addresses how applications con-
nect to GUMP. This uses a TCP input binding, which exposes a
TCP server for connection from a standard XMPP application.
Other input schemes are available however, such as HTTP and
native Java connectivity, through a GUMP java.net socket fac-
tory implementation. The Server Proxy provides a pluggable
interface to multiple messaging protocol server proxies, each
addressing a specific protocol e.g. XMPP, WS-Notification and
so forth. Session Messaging provides an interface to various
discovery subsystems (e.g. multicast DNS for use by the proxy
to be able to advertise and subsequently discover entities on
the network. Finally, Data Messaging provides an interface to
various underlying multicast implementations. Primarily, this
work focuses on investigating two implementations here: the
default Java multicast implementation and NORM (NACK-
Oriented Reliable Multicast) [7] transport for capabilities
requiring reliable multicast delivery.

A. XMPP Proxy, Session and Data Messaging

One of the key features of XO is that it can be used with
existing XMPP clients without any modification. The proxy
is typically run on the same node as the XMPP clients and
a client opens a TCP connection with the proxy on port
5222, and authenticates. The current version of XO does not
implement security, and therefore the proxy authenticates any
username/password pair. However, XO accepts authentication
messages and this can be extended to implement the desired
behavior in the future. Once the socket has been created, a
client sets up a stream the same as it would with a server. The
proxy then processes any presence, iq or message messages it
receives from the client until the stream is closed.

When the proxy receives a message or presence packet from
the client, it passes it to the packet router. The packet router is
an application level XMPP stanza/packet router, which routes
incoming packets to their representative software endpoints.
Examples of endpoints include users locally logged into the
XOP instance, a MUC component or other such component.
When entities connect to the XOP, the packet router stores
routes to them. The packet router determines if the destination
is local (a connected entity) or remote. If it is local, it forwards
it to the connected entity, otherwise it forwards it to the GUMP
multicast interface. Finally, GUMP sends the message out
using whatever protocol (UDP multicast, NORM, etc) it is
currently configured to use.

For receiving packets, XOP uses a GUMP multicast socket.
Incoming packets are sent to the packet router, which then
forwards them to the appropriate connected entity, if any. The

transport mechanism for incoming packets is determined by
the GUMP configuration, the XMPP component responsible
for listening for packets on the network has no need to know
the specific protocol being used.

When the proxy receives an iq (info/query) packet from the
client, it again passes it to the packet router. If it is local, it
is forwarded to the connected entity, otherwise it passes it to
the IQManager component of the XMPP proxy, which updates
a context object if necessary. The context object is intended
to help manage the state of the proxy. Keep in mind that
with no server, some of the state needs to be managed by the
proxy. The context is not used at this point, but could be used
in the future, for example to cache request / response pairs
or to enforce security/policy issues. Finally, the IQManager
performs the appropriate action (advertise service, reply to the
sender with “server information”, query for available services,
etc) using GUMP’s discovery system. GUMP then performs
whatever action is needed for the currently configured discov-
ery protocol (e.g., multi-hop mDNS in our experiment case),
and returns an appropriate response to the client if appropriate.
Specifically, the XOP registers a listener with the GUMP
discovery interface when it starts up. When a discovery-related
event occurs, the XOP creates an iq packet and forwards it
to the packet router for delivery to the appropriate entity, or
updates the state e.g. adds a MUC room to the available rooms.

For topic processing and to avoid the potential future
issues involved with sending all topics to the same multicast
address, the topic names are hashed to a range of multi-
cast addresses in the IPv4 organization local scope (i.e. the
239.192.0.0./14 subnet). The exact process is to take
an MD5 hash of the full Jabber ID (the identifier used by
XMPP of the form [node “@”] domain [“/” resource])
of the room name (e.g.: room@conference.proxy). Then, XO
performs a logical OR on the last 18 significant bits of the
hash and 239.192.0.0 to calculate the multicast address.
Any collisions are handled by the receiver filtering against the
room name. There are longer term issues with standardizing
multicast topic rooms assignment or management but this
initial approach is taken as a working “proof of concept.”
Multiple additional or alternative capabilities can be easily
engineered.

B. Gatewaying

As mentioned in the introduction, if the proxy is running
on a node with connections to both a multicast MANET
and a conventional enterprise environment, it can be setup
as a gateway using XOG which acts as a bridge between
the peer-to-peer XO multicast protocol and the conventional
client-to-server XMPP-MUC protocol. The XOG establishes a
connection with an XMPP MUC server and translates packets
between XO and conventional XMPP. If a packet arrives on
the GUMP discovery interface, the XOG translates it into an
iq packet and sends it to the receiving server. Likewise, if
it receives a presence or message packet from the GUMP
multicast interface it forwards it. Vice versa, when an XMPP
packet arrives from the receiving server, either the appropriate
functions are called in the GUMP discovery interface, or the

1229

packets are converted to XO and handed to the GUMP mul-
ticast interface. This service allows XO sessions on dynamic
mesh and mobile networks to participate in standard XMPP
MUC sessions on other network environments.

Three designs were considered for Gatewaying:
• Use one TCP socket for each client being proxied;
• Use a custom server plugin; or
• Use the standard server-to-server protocol (“Server Dial-

back”).
Using one TCP socket for each client being proxied has the

advantage of being easy to implement using existing XMPP
open source libraries. In this option, the proxy opens one
TCP socket per client being proxied, as though it were the
client. No modification to the server would be necessary.
The disadvantage of this is that it may require an excessive
resources to maintain sockets for each client being proxied.
Another solution to reduce the number of TCP sessions being
maintained is to create a server plugin to handle communi-
cations with the proxy. The main disadvantage here is that
it will not work with unmodified XMPP servers and that it
cannot work with server software other than that for which
the plugin was written. A third solution is to use XMPP’s
server dialback protocol (DB), which is used for server-to-
server communications. The protocol opens a TCP socket,
authenticates, and then may send message, presence, and
iq messages over the socket. This could also be used to
gateway between two XO clusters. We have a preliminary
implementation of the DB approach that supports one XOG
per XO group, but there is no limit on the number XO groups
that could connect to a server.

IV. EMPIRICAL MOBILE NETWORK STUDIES USING XO
All of the experiments described in this work were per-

formed on the Common Open Research Emulator (CORE)
environment running on FreeBSD. CORE [8] allows for low-
fidelity emulation of wired and wireless networks between
virtual machines. These virtual machines can be distributed
across multiple machines running CORE, and also connected
to real non-virtualized network interfaces. In these experi-
ments, all of the hosts were emulated inside CORE.

The scenarios used in our basic experiments were notional
representation of platoon level mobility over an area. Mobile
entities continuously communicate XMPP message stanzas
and additional text chats amongst mobile peer network nodes
– see Figure 2. A testbed was also established to demonstrate
that the MUC sessions can also be back-hauled to a centralized
MUC server over an emulated long-haul wireless link using
XOG. In the scenario the backhaul connection can be removed
and platoon level network mobility allows for fragmentation
to demonstrate the ability to maintain autonomous messaging
locally when operating in a disconnected manner. To study
statistically the performance message delivery an XMPP MUC
traffic generator was used to automate evaluations of dis-
tributed MUC performance. In our experiment, each node uses
a traffic generator to send traffic, which is written using the
Ignite Realtime Smack library 2, and therefore can send traffic

2http://www.igniterealtime.org/projects/smack/

!"#

!$#

!%#

!&#

!'#
()*+,#-./+0)1#
2)340+#2+5/#
6+7*),8#

Dynamic, Wireless Edge

Conventional
Enterprise Environment

OpenFire
Server

 XMPP client

 XMPP client

Client/Server
MUC Standard

XMPP Multi-
User Multicast

Embedded
Clients

 Standard
XMPP clients

+XOP Standard
XMPP clients

+XOP

Other Systems/Standards (e.g., IRC)

XOG Gateway

Fig. 2. Testbed Demonstration: Tactical nodes chatting, with a backhaul link
to a standard enterprise XMPP deployment.

to a room with or without the XO proxy.
The nodes in the platoon move based on the reference point

group mobility model (RPGM), using the Colorado School of
Mines mobility generation tool [9]. This model is a generalized
case of the most commonly used group mobility models. The
parameters used in these experiments appear below:

Parameter Value
Number of Groups 1
Nodes per Group 11
Reference Point (RP) Separation 50
Node Separation from RP varied
Max X 1800
Max Y 1800
End Time 300
Speed Mean 30
Speed Delta 5
Pause Time 2
Pause Delta 2

The only parameter varied was the node separation from the
reference point (SRP), which allowed for nodes to roam closer
or farther away from the reference point, creating different
density including variable probability of fragmentation. The
three values used had the following qualitative descriptions:
• Low connectivity: SRP was set to 400. The nodes

frequently spread out into networks of four to six hops
in diameter. Disconnects were common.

• Medium connectivity: SRP was set to 320. The network
was two or three hops in diameter most of the time, and
disconnects occurred less frequently.

• High connectivity: SRP was set to 230. The network
was tightly clustered, usually within one or two hops.
Disconnects were rare.

These three mobility scenarios are the scenarios used for the
experiments. There is also a fourth scenario, which the same
as the High Connectivity scenario except that a probability
of bit error, Pb = 10−5, was added to the emulated wireless
network channel. Five instances of each of the four types was
created, and one experiment using XO and one experiment

1230

http://www.igniterealtime.org/projects/smack/

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

D
el

iv
er

ed

Latency (ms)

XO
XMPP

(a) Results from high-connectivity scenario.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

D
el

iv
er

ed

Latency (ms)

XO
XMPP

(b) Results from medium-connectivity scenario.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

D
el

iv
er

ed

Latency (ms)

XO
XMPP

(c) Results from low-connectivity scenario.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

D
el

iv
er

ed

Latency (ms)

XO
XMPP

(d) Results from high-connectivity scenario with bit error.

Fig. 3. Latency results for XMPP and XO in the four scenarios. Red solid lines represent XO and blue dashed lines XMPP. The y-axis indicates the
percentage of messages delivered at the corresponding time on the x-axis, truncated at 20 seconds of delay. The XMPP CDF tail continued changing well
past this delay, but not significantly.

using XMPP was done with each instance. Each messages sent
was one sentence from the Declaration of Independence. The
intra-message sending times were exponentially distributed
with λ = 0.2. Each of the ten nodes in the experiments were
configured to both send and receive messages.

A. Baseline

As a baseline for comparison, all of the experiments were
first run configured as XMPP clients communicating with the
XMPP-MUC server in the standard manner. Each of the nodes
ran the Quagga OSPF routing suite 3 to transport packets to
the gateway (node with the link to the infrastructure network),
which routes them to the server. This was accomplished in
CORE using an RJ45 connection to a LAN with an OpenFire
XMPP server running on it.

This configuration presented some problems in this envi-
ronment, because the nodes become disconnected from the
server at times, which often cause the TCP sockets to close.
This was handled by attempting to re-open the TCP socket
if it was not open and a message was ready to be sent. If

3http://www.quagga.net/

that failed, it would wait one second and try again, repeating
until it was successful. In the XO configuration, nothing was
changed except that all of the nodes ran SMF and the XMPP
traffic generators were configured to use the XO proxy rather
than directly connecting with the sever.

B. Results

Figure 3 shows basic results from multiple scenario trials
as a series of cumulative density function (CDF) graphs.
The y axes represent the cumulative message delivery ratio
vs. message delivery delay represented on the x axis. In all
cases, XO significantly outperforms the conventional XMPP
client/server approach in terms of both message delivery ratio
and overall message delay. This effect is further amplified
when the emulated link conditions are degraded by included
statistical channel loss in addition to mobility induced dy-
namics. Under all scenario conditions the conventional XMPP
MUC operating in MANET environments has significantly
skewed message delay statistics with a long tail. In many
cases, there is no message delivery to a client due to socket
failures and TCP issues. We attempt to be fair to XMPP
operation and provide a reasonable short term reconnect time.

1231

http://www.quagga.net/

While XO suffers from some message loss as expected in this
dynamic environment, the collection of XO message delay
CDFs demonstrates a low overall message delivery delay
statistic which is highly encouraging. XO delivered more
messages, and the distribution of the latencies has relatively
low variance with the vast majority of the messages delivered
in less than a second.

There are several caveats that should be mentioned about
our comparison of XMPP and XO. The first is the technique
for allowing the re-opening of TCP sockets that have closed
due to network errors or failures in the XMPP case. This is
certainly not the only approach one could take to mitigate the
problem of closed sockets, and there may be better approaches
that could be examined and optimized. However, again these
modifications would not be conventional XMPP MUC instan-
tiations and we are comparing in a relatively fair manner with
present solutions. Other approaches people might take to make
XMPP perform better could include running multiple servers
on the tactical edge, or having multiple gateway nodes to the
enterprise network. We are not claiming that the performance
we have observed is indicative of the best XMPP given all
architectural choices, but we think it is a valid baseline to
compare against conventional client/server approaches within
the given MANET scenarios.

V. CONCLUSIONS AND LESSONS LEARNED

This paper presented a new XMPP overlay (XO) service that
provides serverless, multicast multi-user messaging and chat.
XO extends presents XMPP standards making it possible to
consider its use as a distributed chat capability within mobile,
wireless network environments. XO works with both existing
XMPP MUC clients and also provides basic gateway services
to conventional XMPP server-based MUC deployments. This
provides interoperation between more tactical edge network
environment operations and stable enterprise deployment en-
vironments. This paper also described and presented initial
empirical results comparing a working implementation of
serverless XO against more conventional TCP-based XMPP
MUC within a set of emulated mobile network scenarios
varying in density. Initial results demonstrate that XO has
significant advantages in terms of both message delivery
ratio and message latency across the set of mobile network
scenarios studied. Overall, XO service extensions are a promis-
ing approach to adapting group-wise messaging in dynamic
mobile mesh networks that preserves the attractive, extensible
messaging features of XMPP and allows interoperation with
existing gateways and client software.

VI. FUTURE WORK

XO is presently a work in progress, with several areas
undergoing further examination and development. First off,
we intend to perform similar performance trials using more
detailed networking models, including more accurate topolog-
ical and wireless conditions. The behavior and performance of
multicast forwarding is often dependent upon the lower layers
of the wireless system and we are interested in examining
those tradeoffs further. While XO is independent of any

particular multicast approach we are also interested in which
multicast protocols or modes provide robust performance for
group messaging protocols such as XO, in terms of both delay
and delivery ratios. Also the addition of multicast-capable
reliable transport protocols, such as NORM, is possible due
to the pluggable transport design approach but the proper use
of such protocols for this application area remains an open
research issue that we are pursuing in future efforts.

In developing serverless and multicast-based messaging
operation new challenges arise related to session management
and data persistence due to the distributed, dynamic operation.
Data consistency or persistence across dynamic, serverless
network services is an also open area for further work that
we are pursuing. Since the network can be unreliable as well
as fragment and merge, a mechanism for persisting data or
even prioritizing the persistence mechanism is needed beyond
typical reliable multicast protocols. We are now examining
multiple algorithms and approaches to provide a modular per-
sistence mechanism to supplement XO. This mechanism will
address data heterogeneity along with congestion control and
will allow for particular mission and data driven configurations
for persistence. Techniques such as epidemic protocols or other
disruption tolerant technologies might be applicable but more
work is needed to understand the value and applicability in
these dynamic environments. Finally, there is the issue of using
XO as a general message bus (as can be done with XMPP
extensions) even when not fragmented. This opens up several
design issues including efficient encoding, compression, and
the proper management of multiple message channels. At
present we can provide a basic XMPP stanza compression
scheme prior to network forwarding to improve bandwidth
utilization. In general, these areas remain open for significant
further study and work.

Finally, we need to examine what the difference in network
overhead is in using XO versus XMPP. This could mean
comparing all (e.g., duplicate packets, control packets, etc)
of the packets that are sent as a result of each chat, which
would require low-level instrumentation.

REFERENCES

[1] Z. Fu, P. Zerfos, H. Luo, L. Lu, L. Zhang, and M. Gerla, “The impact
of multihop wireless channel on TCP throughput and loss,” in IEEE
INFOCOM, vol. 3. Citeseer, 2003, pp. 1744–1753.

[2] I. Chlamtac, M. Conti, and J. J.-N. Liu, “Mobile ad hoc networking:
imperatives and challenges,” Ad Hoc Networks, vol. 1, no. 1, pp. 13–64,
2003.

[3] “Multi User Chat (MUC) - XEP-0045.” [Online]. Available: http:
//xmpp.org/extensions/xep-0045.html

[4] “Link-Local Messaging - XEP-0174.” [Online]. Available: http://xmpp.
org/protocols/linklocal/

[5] “Gateway Interaction - XEP-0100.” [Online]. Available: http://xmpp.org/
extensions/xep-0100.html

[6] J. Macker, et al, “Simplified Multicast Forwarding,” Mar 2010,
http://tools.ietf.org/html/draft-ietf-manet-smf-10.

[7] B. Adamson et al, “Negative-acknowledgment (NACK)-Oriented Reliable
Multicast (NORM) Protocol.” [Online]. Available: http://tools.ietf.org/
html/rfc5740

[8] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE: A
real-time network emulator,” in IEEE Military Communications Confer-
ence, 2008, pp. 1–7.

[9] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad
hoc network research,” Wireless Communications and Mobile Computing:
Special issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, vol. 2, no. 5, pp. 483–502, 2002.

1232

http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/protocols/linklocal/
http://xmpp.org/protocols/linklocal/
http://xmpp.org/extensions/xep-0100.html
http://xmpp.org/extensions/xep-0100.html
http://tools.ietf.org/html/rfc5740
http://tools.ietf.org/html/rfc5740

	I Introduction
	II Related XMPP Standards and Related Multicast Work
	II-A XMPP Extensions
	II-B Related Multicast Work

	III System Components and Design
	III-A XMPP Proxy, Session and Data Messaging
	III-B Gatewaying

	IV Empirical Mobile Network Studies using XO
	IV-A Baseline
	IV-B Results

	V Conclusions and Lessons Learned
	VI Future Work
	References

